Search results

1 – 1 of 1
Article
Publication date: 7 July 2020

Jiaming Liu, Liuan Wang, Linan Zhang, Zeming Zhang and Sicheng Zhang

The primary objective of this study was to recognize critical indicators in predicting blood glucose (BG) through data-driven methods and to compare the prediction performance of…

Abstract

Purpose

The primary objective of this study was to recognize critical indicators in predicting blood glucose (BG) through data-driven methods and to compare the prediction performance of four tree-based ensemble models, i.e. bagging with tree regressors (bagging-decision tree [Bagging-DT]), AdaBoost with tree regressors (Adaboost-DT), random forest (RF) and gradient boosting decision tree (GBDT).

Design/methodology/approach

This study proposed a majority voting feature selection method by combining lasso regression with the Akaike information criterion (AIC) (LR-AIC), lasso regression with the Bayesian information criterion (BIC) (LR-BIC) and RF to select indicators with excellent predictive performance from initial 38 indicators in 5,642 samples. The selected features were deployed to build the tree-based ensemble models. The 10-fold cross-validation (CV) method was used to evaluate the performance of each ensemble model.

Findings

The results of feature selection indicated that age, corpuscular hemoglobin concentration (CHC), red blood cell volume distribution width (RBCVDW), red blood cell volume and leucocyte count are five most important clinical/physical indicators in BG prediction. Furthermore, this study also found that the GBDT ensemble model combined with the proposed majority voting feature selection method is better than other three models with respect to prediction performance and stability.

Practical implications

This study proposed a novel BG prediction framework for better predictive analytics in health care.

Social implications

This study incorporated medical background and machine learning technology to reduce diabetes morbidity and formulate precise medical schemes.

Originality/value

The majority voting feature selection method combined with the GBDT ensemble model provides an effective decision-making tool for predicting BG and detecting diabetes risk in advance.

1 – 1 of 1